The rapid advancement in the field of omics approaches plays a crucial role in the development of improved industrial oil crops. Industrial oil crops are important for many sectors like food processing, biofuels, cosmetics, and pharmaceuticals, making them indispensable contributors to global economies and these crops serve as vital elements in a multitude of industrial processes. Significant improvements in genomics have revolutionized the agricultural sector, particularly in the realm of oil crops. Cutting-edge advancements have facilitated the efficient sequencing of genomes for key commercial oil crops. This breakthrough not only enhances our understanding of the genetic makeup of these crops but also empowers breeders with invaluable insights for targeted genetic manipulation and breeding programs. Moreover, integrating transcriptomics with genomic data has assisted in a new era of precision agriculture. This approach provides an in-depth understanding of molecular mechanisms involved in traits of interest, such as oil content, yield potential, and resistance to biotic and abiotic stresses. Proteomics methods are instrumental in deciphering the intricacies of protein structure, interactions, and function, while metabolomics and ionomics shed light on the intricate network of metabolites and ions within biological systems. Each omics discipline offers unique insights, and their integration holds the promise of enriching our understanding and furnishing invaluable insights for enhancing oil crops. This review delves into the efficacy and constraints of various omics approaches in the context of refining industrial oil crops. Moreover, it underscores the importance of multi-omics strategies and explores their convergence with genetic engineering techniques to cultivate superior oil crop varieties.
Keywords: Genomics; Industrial oil crops; Metabolomics; Omics; Proteomics; Transgene.
Copyright © 2025 Elsevier B.V. All rights reserved.