Lanthanide-Based Metal-Organic Frameworks Offering Hydrogen Bonding Cavities: Luminescent Characteristics and Sensing Applications

Chem Asian J. 2025 Jan 3:e202401213. doi: 10.1002/asia.202401213. Online ahead of print.

Abstract

This work presents the synthesis and characterization of three isomorphous lanthanide-based metal-organic frameworks (Ln-MOFs) (Ln3+=Eu (1), Tb (2), and Sm (3)) supported by a pyridine-2,6-dicarboxamide-based linker offering appended arylcarboxylate groups. Single crystal X-ray diffraction studies highlight that these Ln-MOFs present three-dimensional porous architectures offering large cavities decorated with hydrogen bonding (H-bonding) groups. These Ln-MOFs display noteworthy luminescent characteristics. The mixed-metal strategy affords a series of Ln-MOFs exhibiting color-tunable emissions. The Eu-MOF was utilized for the nanomolar sensing of both nitrobenzene and 4-nitrophenol. The critical role of H-bonding in detecting these analytes is validated through multiple spectroscopic, ξ potential, and molecular docking studies. The Eu-MOF illustrated notable anticounterfeiting as well as practical sensing applications.

Keywords: Lanthanide; MOF; Nitroaromatics; Photoluminescence; Sensing.