Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems. We first explored how the nucleation free energy barrier and critical cluster size are influenced by the fraction of randomly pinned (or, static) particles (fp) and the size (np) of the pinned region or cluster. Both the nucleation free energy barrier and critical cluster size increase sharply with increasing fp but decrease as np grows for a given fraction of pinned particles, eventually approaching the homogeneous nucleation limit. On examining the impact of impurity's surface morphology on nucleation kinetics, we observed that the nucleation barrier significantly decreases with increasing the impurity (or, seed) size with crystalline surface morphologies with body-centered cubic showing the greatest facilitation. Interestingly, seeds with random surface roughness had little effect on nucleation kinetics. In addition, the polymorphic identity of particles in the final crystalline phase is influenced by both the seed's surface morphology and system size. This study further provides crucial insights into the intricate relationship between surface-induced local structural fluctuations and the selection of the polymorphic identity in the final crystalline phase, which is essential for understanding and controlling crystallization processes in experiments.
© 2025 Author(s). Published under an exclusive license by AIP Publishing.