Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources. The measurement results reported here represent the first experimental demonstration of this interrogation approach on enriched uranium items and demonstrate the feasibility of a precise measurement using realistic nuclear materials, representative of field scenarios, even with just a single laser-driven neutron pulse. Bright pulsed sources can overcome the nuisance background of items with strong internal neutron sources, improving analytical power, while single-shot assay is attractive in high-throughput situations where time is at a premium. The science and technology of this type of neutron production is developing rapidly, and we anticipate that practical mobile interrogation systems will become available based on the detection concepts demonstrated here to meet the growing measurement needs.
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.