Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process. Initially, the membrane's endogenous-level surface potential recruits stem cells from the socket. Subsequently, adherent cell-migration-triggered forces generate on-demand piezopotential, stimulating intracellular calcium ion fluctuations and activating the Ca2+/calcineurin/NFAT1 signaling pathway via Cav3.2 channels. This enhances cell motility and osteogenic differentiation predominantly in the coronal socket region, counteracting the natural healing trajectory. The membrane's self-powered energy supply, proportional to cell migration velocity and manifested as nanoparticle deformation, mitigates ridge shrinkage, both independently and in conjunction with bone grafts. This energy-autonomous membrane, based on the spatiotemporal modulation of cell motility, presents a novel approach for in-situ ARP treatment and the development of 4D bionic scaffolds.
Keywords: Alveolar ridge preservation; Bone regeneration; Cell-migration-mediated piezopotential; Electroactive membrane; Spatiotemporal electrical modulation.
Copyright © 2024. Published by Elsevier Ltd.