De novo discovery of cyclic peptide inhibitors of IL-11 signaling

Bioorg Med Chem. 2024 Nov 27:119:118017. doi: 10.1016/j.bmc.2024.118017. Online ahead of print.

Abstract

Interleukin-11 (IL-11), a member of the IL-6 cytokine family, has potential pro-inflammatory and pro-fibrotic roles in pulmonary, hepatic, cardiovascular, renal and intestinal disease pathogenesis, including oncogenesis. The potential for therapeutic intervention in these disease spaces has therefore made the IL-11 signaling axis an attractive target in drug discovery, and antibody inhibitors of IL-11 signaling are currently under evaluation in Phase I/II clinical trials. While lower molecular weight small molecule and peptide inhibitors may offer the potential for improved tissue penetration, developability and manufacturing cost compared with a protein therapeutic, reports of such chemical matter in the literature are limited. In this work, a series of cyclic peptides derived from phage display biopanning campaigns against both IL-11 and its cognate receptor IL-11Rα are presented. The most active IL-11 binder (peptide 4, KD 140 nM) exhibited inhibition of IL-11/IL-11Rα dimerization in a biochemical AlphaLISA assay (Ki 300 nM), and alanine scanning was carried out on this sequence to identify residues important for target binding and inhibitory activity. Further structural optimization yielded lead peptide 15 (Ki 180 nM), which exhibited at least 70-fold greater activity than IL-11 inhibitors previously reported in the literature. The de novo peptide macrocycles presented serve as a robust starting point for development of therapeutic inhibitors of the IL-11/IL-11Rα interaction.

Keywords: AlphaLISA; Antagonist; Cytokine; IL-11; Inhibitor; Peptide; Phage display.