Understanding the mechanisms of hypoblast development and its role in the implantation is critical for improving farm animal reproduction, but it is hampered by the lack of research models. Here we report that a chemical cocktail (FGF4, BMP4, IL-6, XAV939, and A83-01) enables de novo derivation and long-term culture of bovine extraembryonic endoderm cells (bXENs). Transcriptomic and epigenomic analyses confirmed the identity of bXENs and revealed that they are resemble hypoblast lineages of early bovine peri-implantation embryos. We showed that bXENs help maintain the stemness of bovine ESCs and prevent them from differentiation. In the presence of a signaling cocktail sustaining bXENs, the growth and progression of epiblasts are also facilitated in the developing pre-implantation embryo. Furthermore, through 3D assembly of bXENs with bovine ESCs and TSCs, we developed an improved bovine blastocyst like structure (bovine blastoid) that resembles blastocyst. The bovine XENs and blastoids established in this study represent accessible in vitro models for understanding hypoblast development and improving reproductive efficiency in livestock species.