Genomic characterization of novel bat kobuviruses in Madagascar: implications for viral evolution and zoonotic risk

bioRxiv [Preprint]. 2024 Dec 24:2024.12.24.630179. doi: 10.1101/2024.12.24.630179.

Abstract

Kobuviruses (family Picornaviridae, genus Kobuvirus) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, and filoviruses, though much of the bat virome still remains uncharacterized. While most bat virus research has historically focused on immediately recognizable zoonotic clades (e.g. SARS-related coronaviruses), a handful of prior reports catalog kobuvirus infection in bats and posit the role of bats as potential progenitors of downstream kobuvirus evolution. As part of a multi-year study, we carried out metagenomic Next Generation Sequencing (mNGS) on fecal samples obtained from endemic, wild-caught Madagascar fruit bats to characterize potentially zoonotic viruses circulating within these populations. The wild bats of Madagascar represent diverse Asian and African phylogeographic histories, presenting a unique opportunity for viruses from disparate origins to mix, posing significant public health threats. Here, we report detection of kobuvirus RNA in Malagasy fruit bat (Eidolon dupreanum) feces and undertake phylogenetic characterization of one full genome kobuvirus sequence, which nests within the Aichivirus A clade - a kobuvirus clade known to infect a wide range of hosts including humans, rodents, canids, felids, birds, and bats. Given the propensity of kobuviruses for recombination and cross-species infection, further characterization of this clade is critical to accurate evaluation of future zoonotic threats.

Keywords: Madagascar; bats; kobuvirus; metagenomic Next Generation Sequencing (mNGS); picornavirus.

Publication types

  • Preprint