Multi-ancestry GWAS of severe pregnancy nausea and vomiting identifies risk loci associated with appetite, insulin signaling, and brain plasticity

Res Sq [Preprint]. 2024 Dec 16:rs.3.rs-5487737. doi: 10.21203/rs.3.rs-5487737/v1.

Abstract

While most pregnancies are affected by nausea and vomiting, hyperemesis gravidarum (HG) is at the severe end of the clinical spectrum and is associated with dehydration, undernutrition, and adverse maternal, fetal, and child outcomes. Herein we performed a multi-ancestry genome-wide association study (GWAS) of severe nausea and vomiting of pregnancy of 10,974 cases and 461,461 controls across European, Asian, African, and Latino ancestries. We identified ten significantly associated loci, of which six were novel (SLITRK1, SYN3, IGSF11, FSHB, TCF7L2, and CDH9), and confirmed previous genome-wide significant associations with risk genes GDF15, IGFBP7, PGR, and GFRAL. In a spatiotemporal analysis of placental development, GDF15 and TCF7L2 were expressed primarily in extra villous trophoblast, and using a weighted linear model of maternal, paternal, and fetal effects, we confirmed opposing effects for GDF15 between maternal and fetal genotype. Conversely, IGFBP7 and PGR were primarily expressed in developing maternal spiral arteries during placentation, with effects limited to the maternal genome. Risk loci were found to be under significant evolutionary selection, with the strongest effects on nausea and vomiting mid-pregnancy. Selected loci were associated with abnormal pregnancy weight gain, pregnancy duration, birth weight, head circumference, and pre-eclampsia. Potential roles for candidate genes in appetite, insulin signaling, and brain plasticity provide new pathways to explore etiological mechanisms and novel therapeutic avenues.

Publication types

  • Preprint