DNA replication ensures the precise transmission of genetic information from parent to daughter cells. In eukaryotes, this process involves the replication of every base pair within a highly complex chromatin environment, encompassing multiple levels of chromatin structure and various chromatin metabolic processes. Recent evidence has demonstrated that DNA replication is strictly regulated in both temporal and spatial dimensions by factors such as 3D genome structure and transcription, which is crucial for maintaining genomic stability in each cell cycle. In this review, we discuss the diverse mechanisms that govern eukaryotic DNA replication, emphasizing the roles of chromatin architecture and transcriptional activity within the mammalian chromatin landscape. These insights provide a foundation for future investigations in this field.
Keywords: 3D genome structure; DNA replication; chromatin environment; transcription.
Copyright © 2024 Elsevier Ltd. All rights reserved.