Theoretical Investigation of Single-Atom Catalysts for Hydrogen Evolution Reaction Based on Two-Dimensional Tetragonal Mo3C2

Materials (Basel). 2024 Dec 15;17(24):6134. doi: 10.3390/ma17246134.

Abstract

Developing highly efficient and cost-competitive electrocatalysts for the hydrogen evolution reaction (HER), which can be applied to hydrogen production by water splitting, is of great significance in the future of the zero-carbon economy. Here, by means of first-principles calculations, we have scrutinized the HER catalytic capacity of single-atom catalysts (SACs) by embedding transition-metal atoms in the C and Mo vacancies of a tetragonal Mo3C2 slab, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni and Cu. All the Mo3C2-based SACs exhibit excellent electrical conductivity, which is favorable to charge transfer during HER. An effective descriptor, Gibbs free energy difference (ΔGH*) of hydrogen adsorption, is adopted to evaluate catalytic ability. Apart from SACs with Cr, Mn and Fe located at C vacancies, all the other SACs can act as excellent catalysts for HER.

Keywords: density functional theory; hydrogen evolution reaction; single-atom catalysts; transition metal carbide.