Robotic devices with integrated tactile sensors can accurately perceive the contact force, pressure, sliding, and other tactile information, and they have been widely used in various fields, including human-robot interaction, dexterous manipulation, and object recognition. To address the challenges associated with the initial value drift, and to improve the durability and accuracy of the tactile detection for a robotic dexterous hand, in this study, a flexible tactile sensor is designed with high repeatability by introducing a supporting layer for pre-separation. The proposed tactile sensor has a detection range of 0-5 N with a resolution of 0.2 N, and the repeatability error is as relatively small as 1.5%. In addition, the response time of the proposed tactile sensor under loading and unloading conditions are 80 ms and 160 ms, respectively. Moreover, a three-dimensional force decoupling detection method is developed by distributing tactile sensor units on a non-coplanar robotic fingertip. Finally, using a backpropagation neural network, the classification and recognition processes of nine types of objects with different shapes and categories are realized, achieving an accuracy higher than 95%. The results show that the proposed three-dimensional force tactile sensing system could be beneficial for the delicate manipulation and recognition for robotic dexterous hands.
Keywords: high-repeatability feature; object recognition; robotic dexterous fingertip; three-dimensional force tactile sensing.