Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets

Toxics. 2024 Dec 21;12(12):929. doi: 10.3390/toxics12120929.

Abstract

Acute pancreatitis (AP), induced by tetracycline, a widely used antibiotic, poses significant clinical and toxicological challenges, yet its molecular mechanisms remain unclear. This study aims to promote drug toxicology strategies for the effective investigation of the putative toxicity and potential molecular mechanisms of antibiotic drugs through the study of tetracycline in AP. Using the SwissTargetPrediction, SEA Search, Super-PRED, GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD), we identified 259 potential targets associated with tetracycline exposure and AP. Further refinement via the STRING database and Cytoscape (version 3.10.1) software highlighted 22 core targets, including TP53, TNF, and AKT1. Functional enrichment via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) identified pathways through Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, highlighting PI3K-Akt, MAPK, HIF-1, and AGE-RAGE as critical mediators in tetracycline-induced AP. Molecular docking confirmed the strong binding between tetracycline and the core targets. Overall, these findings suggest that tetracycline may affect the occurrence and progression of pancreas-related inflammation by regulating pancreatic cell apoptosis and proliferation, activating inflammatory signaling pathways, and regulating lipid metabolic pathways. This study provides a theoretical basis for understanding the molecular mechanism of tetracycline-induced AP and lays the foundation for the prevention and treatment of digestive system diseases associated with excessive exposure to tetracycline antibiotics and certain tetracyclines. In addition, our network toxicology approach has accelerated the elucidation of toxic pathways in antibiotic drugs that lack specific characteristics.

Keywords: acute pancreatitis; molecular docking; network toxicology; tetracycline; toxicant metabolism.