In the face of declining crop yields, inefficient fertilizer usage, nutrient depletion, and limited water availability, the efficiency of conventional NPK fertilizers is a critical issue in India. The hypothesis of this study posits that nano-nitrogen could enhance growth and photosynthetic efficiency in crop plants compared to conventional fertilizers. For this, a randomized block design (RBD) field experiment was conducted with six treatments: no nitrogen (T1), 100% N through urea (T2), and varying levels of N replacement with nano-nitrogen (33%: T3; 50%: T4; 66%: T5; and 100%: T6). Morphological and physiological traits and yield attributes were measured at physiological maturity, and yield attributes were measured at harvest. Results showed that 33% nitrogen replacement with nano-nitrogen (T3) outperformed conventional urea (T2) in physiological traits and achieved higher grain yields (3789 kg/ha for rice and 4206 kg/ha for wheat) compared to T2 (3737 kg/ha for rice and 4183 kg/ha for wheat with 100% urea). Although T4 and T5 showed statistically similar yields, they were lower than T2 and T3 for rice, while 50%, 66%, and 100% replacements reduced wheat yield by 2.49%, 8.39%, and 41.26%, respectively, compared to T2. Key enzymes of N metabolism decreased with higher nano-nitrogen substitution. Maximum nitrogen availability was observed in T2 and T3. This study concludes that nano-nitrogen is an effective strategy to enhance growth, balancing productivity and environmental sustainability.
Keywords: N-metabolizing enzymes; available soil N; nano-nitrogen; physiological traits; yield.