TCAD Simulation of Two Photon Absorption-Transient Current Technique Measurements on Silicon Detectors and LGADs

Sensors (Basel). 2024 Dec 16;24(24):8032. doi: 10.3390/s24248032.

Abstract

Device simulation plays a crucial role in complementing experimental device characterisation by enabling deeper understanding of internal physical processes. However, for simulations to be trusted, experimental validation is essential to confirm the accuracy of the conclusions drawn. In the framework of semiconductor detector characterisation, one powerful tool for such validation is the Two Photon Absorption-Transient Current Technique (TPA-TCT), which allows for highly precise, three-dimensional spatially-resolved characterisation of semiconductor detectors. In this work, the TCAD framework Synopsys Sentaurus is used to simulate depth-resolved TPA-TCT data for both p-type pad detectors (PINs) and Low Gain Avalanche Detectors (LGADs). The simulated data are compared against experimentally measured TPA-TCT results. Through this comparison, it is demonstrated that TCAD simulations can reproduce the TPA-TCT measurements, providing valuable insights into the TPA-TCT itself. Another significant outcome of this study is the successful simulation of the gain reduction mechanism, which can be observed in LGADs with increasing densities of excess charge carriers. This effect is demonstrated in an p-type LGAD with a thickness of approximately 286 µm. The results confirm the ability of TCAD to model the complex interaction between carrier dynamics and device gain.

Keywords: Technology Computer Aided Design; Transient Current Technique; Two Photon Absorption-Transient Current Technique; device simulation; silicon detectors; solid state detectors.