Pseudomonas aeruginosa is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a Pseudomonas lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family Mesyanzhinovviridae, and is featured by short latency (30 min) and large burst size (103 PFU per infected cell). Our investigation revealed that PaTJ utilizes the type IV Pili (T4P) as a receptor. Transcriptome analysis of PaTJ infected host at latent stage showed distinct expression patterns of PaTJ encoding genes involved in replication and structure assembly, without expression of the majority of toxic accessory genes responsible for phage release. In addition, host bacteria exhibited specific induction of host metabolism-related genes in response to the PaTJ's infection. Furthermore, our findings demonstrated the PaTJ's potential in degrading biofilms. This work sheds light on the multifaceted impact of this lytic phage PaTJ on P. aeruginosa, presenting potential applications in both gene expression modulation and biofilm management.
Keywords: Pseudomonas aeruginosa; lytic phage; metabolism; type IV pili.