Population-level amplification of gene regulation by programmable gene transfer

Nat Chem Biol. 2025 Jan 8. doi: 10.1038/s41589-024-01817-9. Online ahead of print.

Abstract

Engineering cells to sense and respond to environmental cues often focuses on maximizing gene regulation at the single-cell level. Inspired by population-level control mechanisms like the immune response, we demonstrate dynamic control and amplification of gene regulation in bacterial populations using programmable plasmid-mediated gene transfer. By regulating plasmid loss rate, transfer rate and fitness effects via Cas9 endonuclease, F conjugation machinery and antibiotic selection, we modulate the fraction of plasmid-carrying cells, serving as an amplification factor for single-cell-level regulation. This approach expands the dynamic range of gene expression and allows orthogonal control across populations. Our platform offers a versatile strategy for dynamically regulating gene expression in engineered microbial communities.