Mineral precipitation is ubiquitous in natural and engineered environments, such as carbon mineralization, contaminant remediation, and oil recovery in unconventional reservoirs. The precipitation process continuously alters the medium permeability, thereby influencing fluid transport and subsequent reaction kinetics. The diversity of preferential precipitation zones controls flow and transport efficiency as well as the capacity of mineral sequestration and immobilization. Taking barite precipitation as an example, previous studies have examined this process in porous and/or fractured media, but pore-scale mechanisms under varying flowing and geochemical conditions remain unexplored. In this study, we conducted real-rock microfluidic experiments to investigate the precipitation dynamics within a fractured porous system. Direct observations of the evolution of the porous structure and flow channel and quantifications of barite precipitation dynamics using X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), revealed two distinct precipitation regimes: precipitation on the fracture surface (regime I) and precipitation in the alteration zone (regime II). Through theoretical analysis of the rate of advection and nucleation, we defined a dimensionless number Da above which regime I occurs and regime II prevails otherwise. At the large Da number, when the precipitation rate is large compared with the flow rate, precipitation on the fracture surface is favored. As the precipitation regimes are expected to impact differently the permeability of the fractured porous media, the mass transfer across matrix and fractures, and the spatial distributions of coprecipitated contaminants, our work sheds light on accurately modeling reactive transport in fractured porous media across diverse applications.