g-C3N4 S-Scheme Homojunction through Van der Waals Interface Regulation by Intrinsic Polymerization Tailoring for Enhanced Photocatalytic H2 Evolution and CO2 Reduction

Angew Chem Int Ed Engl. 2025 Jan 9:e202425439. doi: 10.1002/anie.202425439. Online ahead of print.

Abstract

The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces. The homojunction catalyst, composed of g-C3N4 nanodots and ultra-thin g-C3N4 nanoflakes, exhibited a significant S-scheme carrier separation mechanism, which enhances the utilization of electrons and holes. Consequently, under AM 1.5 light irradiation (~100 mW/cm2), the g-C3N4 homojunction photocatalyst achieved a remarkable hydrogen evolution rate of 580 μmol h-1. Furthermore, a reversed CH4 selectivity in CO2 reduction was observed, yielding 80.30 μmol g-1 h-1 with a selectivity of 96.86 %, in contrast to the performance of bulk g-C3N4, which produced only 2.22 μmol g-1 h-1 with the 15.69 % CH4 selectivity. These findings not only highlight the significant potential of the g-C3N4 homojunction photocatalyst for hydrogen production and CO2 reduction but also propose a superior and effective strategy for optimizing the structural properties of g-C3N4, which are crucial for the design of photocatalytic reactions.

Keywords: Carbon Nitride; Homojunction; Photocatalytic CO2 reduction; Photocatalytic hydrogen evolution; S-Scheme.