Plasmodesmata are cell-wall-embedded channels that evolved in the common ancestor of land plants to increase cell-to-cell communication. Whether all the fundamental properties of plasmodesmata emerged and were inherited in all land plants at the same time is unknown. Here we show that the bryophyte Marchantia polymorpha (a non-vascular plant) forms mostly simple plasmodesmata in early-developing gemmae. The complexity of plasmodesmata increases during gemma maturation, and complex plasmodesmata with enlarged cavities are majorly observed in thalli. In contrast to vascular plants, whose simple plasmodesmata can transport monomeric fluorescent proteins, plasmodesmata in Marchantia polymorpha limited their permeability before the juvenile-to-adult transition. In support, callose, a known polysaccharide regulating plasmodesmata permeability in vascular plants, accumulated in most of the Marchantia polymorpha tissues examined. Furthermore, we found that in the apical meristematic region, plasmodesmata allowed the transport of monomeric fluorescent proteins, and this relaxation might correlate with the lower accumulation of callose. Taken together, our study suggests that certain plasmodesmata properties, such as complexity progression and callose accumulation, may have evolved before the divergence between vascular and non-vascular plants.
Keywords: Marchantia polymorpha; callose; particle bombardment; photo-conversion; plasmodesmata.
© The Author(s) 2024. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.