Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Keywords: Carbon metabolism; Metabolic engineering; Ralstonia eutropha; Synthetic biology; Value-added chemicals.
Copyright © 2025 Elsevier Inc. All rights reserved.