Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film

Polymers (Basel). 2024 Dec 30;17(1):76. doi: 10.3390/polym17010076.

Abstract

A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach. UV-curable resins are obtained by incorporating the synthesized monomer as the thiol component. The effects of thiol content on the UV-curing behavior, refractive index, shrinkage, adhesion to the polyethylene terephthalate (PET) foil, and viscoelastic recovery are examined. The thermal properties are assessed using differential scanning calorimetry and thermogravimetric analysis. Field-emission scanning electron microscopy confirms the successful replication of the prism film. In edge-lit light-emitting diode (LED) backlight units, the prism film showed increased luminance with higher thiol monomer content in the UV-curable resin while maintaining stable color coordinates. This novel highly refractive index monomer can be utilized in luminance-enhancing prism films, thereby contributing to future innovations in the display film industry.

Keywords: TFT-LCD; backlight; high refractive index; imprint; luminance; prism film; thiol–acrylate reaction.