Recently, the application of deep neural networks to detect anomalies on medical images has been facing the appearance of noisy labels, including overlapping objects and similar classes. Therefore, this study aims to address this challenge by proposing a unique attention module that can assist deep neural networks in focusing on important object features in noisy medical image conditions. This module integrates global context modeling to create long-range dependencies and local interactions to enable channel attention ability by using 1D convolution that not only performs well with noisy labels but also consumes significantly less resources without any dimensionality reduction. The module is then named Global Context and Local Interaction (GCLI). We have further experimented and proposed a partial attention strategy for the proposed GCLI module, aiming to efficiently reduce weighted redundancies. This strategy utilizes a subset of channels for GCLI to produce attention weights instead of considering every single channel. As a result, this strategy can greatly reduce the risk of introducing weighted redundancies caused by modeling global context. For classification, our proposed method is able to assist ResNet34 in achieving up to 82.5% accuracy on the Chaoyang test set, which is the highest figure among the other SOTA attention modules without using any processing filter to reduce the effect of noisy labels. For object detection, the GCLI is able to boost the capability of YOLOv8 up to 52.1% mAP50 on the GRAZPEDWRI-DX test set, demonstrating the highest performance among other attention modules and ranking second in the mAP50 metric on the VinDR-CXR test set. In terms of model complexity, our proposed GCLI module can consume fewer extra parameters up to 225 times and has inference speed faster than 30% compared to the other attention modules.
Keywords: attention mechanism; deep learning; noisy labels; weighted redundancies.