This paper investigates the use of the BOTDA (Brillouin Optical Time-Domain Analysis) technology to monitor a large-scale bored pile wall in the field. Distributed fiber optic sensors (DFOSs) were deployed to measure internal temperature and strain changes during cement grouting, hardening, and excavation-induced deformation of a secant pile wall. The study details the geological conditions and DFOS installation process. During grouting, the temperature increased by approximately 69 °C due to cement hydration 30 min post-grouting, while the strain decreased by 0.5% on average due to cement slurry shrinkage. During excavation, the temperature changes were minimal, but the excavation depth significantly influenced the strain distribution, with continuous compressive deformation observed in two monitored boreholes. Two analytical methods, the numerical integration method (NIM) and the finite difference method (FDM), were used to calculate the lateral pile displacement based on the monitored strain data. The results were compared with previous monitoring data, showing that the lateral displacement of the pile was minimal after excavation and was attributed to the high stiffness of the secant pile wall. This study demonstrates the effectiveness of DFOSs and BOTDA technology for monitoring complex pile wall behaviors during construction.
Keywords: BOTDA; bored pile wall; distributed fiber optic sensors; excavation.