Infections with the liver fluke (Fasciola hepatica) cause economic losses in cattle production worldwide. Also, infections with rumen flukes (Calicophoron/Paramphistomum spp.) are gaining importance in grazing cattle in Europe. However, increasing resistance of helminth parasites against anthelmintics and limitations in treatment emphasize the need for alternative breeding approaches. This study included 1602 dairy cows kept on 29 farms with 2423 observations for F. hepatica and Calicophoron/Paramphistomum spp. egg counts per gram faeces (EPG). The EPGs were binary defined (infected: EPG > 0; non-infected: EPG = 0) and logarithmically transformed. The pedigree included 7939 cows. Genotypes (777 k) were available for 214 cows. A single-step GBLUP (ssGBLUP) model was applied to estimate genetic parameters for infection traits. Genomic breeding values from ssGBLUP were used in a single-step genome-wide association study (ssGWAS) to identify genetic variants associated with helminth infections. The heritability for liver fluke infections was up to 0.09, and up to to 0.34 for rumen fluke infections. The genetic correlations between liver and rumen fluke infections ranged from 0.49 to 0.53, indicating that breeding for improved resilience to both helminth taxa is possible simultaneously. The ssGWAS revealed four SNPs for liver fluke infections on BTA 5, 13, 26 and 29, and 17 SNPs for rumen fluke infections on BTA 3 and 23. The SNPs for liver fluke infections were annotated to 12 potential candidate genes, most of which involved in liver fibrosis and immunity. The LRRC8B gene was found to be involved in host-rumen fluke interactions.
Keywords: Candidate gene; Cattle; Helminths; Heritability; Liver fluke; Rumen fluke.
Copyright © 2025. Published by Elsevier B.V.