Polarization of microglia following spinal cord injury (SCI) is a pivotal pathological process of secondary injury. Although differentiation antagonistic nonprotein coding RNA (DANCR) has been implicated in immune and inflammatory responses across various diseases, its role in SCI still unclear. This research aimed to clarify the underlying mechanisms of DANCR in SCI recovery by investigating its expression pattern in microglia. Our findings indicate that the DANCR level in microglia is increased after SCI and that its knockdown can promote microglial M2-type polarization; suppress inflammatory cytokines, oxidative stress, and neuronal apoptosis; and facilitate nerve regeneration as well as spinal cord functional recovery. Further investigations suggest that DANCR's effects are mediated through the ACTN4/STAT3 axis. These results provide potential targets for enhancing functional recovery following SCI.
Keywords: ACTN4/STAT3 axis; DANCR; microglial polarization; neuroinflammation; spinal cord injury.
Copyright © 2025. Published by Elsevier Inc.