Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.
Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024. 6417 articles were identified, 160 were reviewed and 18 were included.
Findings: Results on aerosol concentration were discussed in terms of three categories: (1) filtration and inactivation of aerosol particles; (2) effect of airflow and ventilation on aerosol concentrations; and (3) improvements or reduction in health conditions. The most common device or method that was outlined by researchers was high efficiency particulate air (HEPA) filters which were able to reduce aerosol concentrations under investigation across the included literature. Some articles were able to demonstrate the effectiveness of interventions in terms of improving health outcomes for patients.
Interpretation: The key finding is that infectious aerosol concentration improvement measures based on filtration, inactivation, improved air flow dynamics, and ventilation reduce the likelihood of nosocomial infections. However limitations of such approaches must be considered such as noise pollution and effects on ambient humidity. Whilst these efforts can contribute to improved air quality in hospitals, they should be considered with the other interacting factors such as microclimates, room dimensions and use of chemical products that effect air quality.
Funding: This study is funded by the National Institute for Health and Care Research (NIHR) (NIHR205439).
Keywords: Air safety; Filtration device; Hospital; Infectious respiratory particles; Ventilation; Ventilation device.
© 2024 The Authors.