Repetitive manual labor tasks involving twisting, bending, and lifting commonly lead to lower back and knee injuries in the workplace. To identify tasks with high injury risk, we recruited N = 9 participants to perform industry-relevant, 2-handed lifts with a 11-kg weight. These included symmetrical/asymmetrical, ascending/descending lifts that varied in start-to-end heights (knee-to-waist and waist-to-shoulder). We used a data-driven musculoskeletal model that combined force and motion data with a muscle activation-informed solver (OpenSim, CEINMS) to estimate 3-dimensional internal joint contact forces (JCFs) in the lower back (L5/S1) and knee. Symmetrical lifting resulted in larger peak JCFs than asymmetrical lifting in both the L5/S1 (+20.2% normal [P < .01], +20.3% shear [P = .001], +20.6% total [P < .01]) and the knee (+39.2% shear [P = .001]), and there were no differences in peak JCFs between ascending versus descending motions. Below-the-waist lifting generated significantly greater JCFs in the L5/S1 and knee than above-the-waist lifts (P < .01). We found a positive correlation between knee and L5/S1 peak total JCFs (R2 = .60, P < .01) across the task space, suggesting motor coordination that favors sharing of load distribution across the trunk and legs during lifting.
Keywords: injury risk; internal joint loading; lumbar spine; musculoskeletal modeling.