Green Synthesis of Silver-Doped ZnO Nanoparticles From Adiantum venustum D. Don (Pteridaceae): Antimicrobial and Antioxidant Evaluation

J Basic Microbiol. 2025 Jan 14:e2400543. doi: 10.1002/jobm.202400543. Online ahead of print.

Abstract

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A. venustum plants were gathered, then their bioactive elements were extracted with cold water and processed into nanoparticles. The main goal was to develop Ag-ZnO NPs (nanoparticles) for medical applications, especially with regard to their antifungal and antibacterial properties. Pathogens such as Fusarium oxysporum, Escherichia coli, and Staphylococcus aureus were tested against the synthesized nanoparticles. While FTIR spectroscopy revealed functional groups, X-ray diffraction validated the crystalline structure. The scanning electron microscope analysis revealed that the Ag-ZnO NPs had an average size of 30.16 nm and an irregular shape. Additionally, energy dispersive X-ray analysis) confirmed the elemental composition. The bioactive compounds present in A. venustum significantly stabilized the nanoparticles. Strong antioxidant and antibacterial activity of the Ag-ZnO nanoparticles was demonstrated. In particular, this work shows that the Ag-ZnO nanoparticles produced by green synthesis could be used in biomedical drug delivery and therapy.

Keywords: Ag doped ZnO NPs; antimicrobial activity; antioxidant activity; biomedical applications; environmental benignity; green synthesis.