Retrovirus particles with type C morphology were found in two T-cell lymphoblastoid cell lines, HUT 102 and CTCL-3, and in fresh peripheral blood lymphocytes obtained from a patient with a cutaneous T-cell lymphoma (mycosis fungoides). The cell lines continuously produce these viruses, which are collectively referred to as HTLV, strain CR(HTLV(CR)). Originally, the production of virus from HUT 102 cells required induction with 5-iodo-2'-deoxyuridine, but the cell line became a constitutive producer of virus at its 56th passage. Cell line CTCL-3 has been a constitutive producer of virus from its second passage in culture. Both mature and immature extracellular virus particles were seen in thin-section electron micrographs of fixed, pelleted cellular material; on occasion, typical type C budding virus particles were seen. No form of intracellular virus particle has been seen. Mature particles were 100-110 nm in diameter, consisted of an electron-dense core surrounded by an outer membrane separated by an electron-lucent region, banded at a density of 1.16 g/ml on a continuous 25-65% sucrose gradient, and contained 70S RNA and a DNA polymerase activity typical of viral reverse transcriptase (RT; RNA-dependent DNA nucleotidyltransferase). Under certain conditions of assay, HTLV(CR) RT showed cation preference for Mg(2+) over Mn(2+), distinct from the characteristics of cellular DNA polymerases purified from human lymphocytes and the RT from most type C viruses. Antibodies to cellular DNA polymerase gamma and anti-bodies against RT purified from several animal retroviruses failed to detectably interact with HTLV(CR) RT under conditions that were positive for the respective homologous DNA polymerase, demonstrating a lack of close relationship of HTLV(CR) RT to cellular DNA polymerases gamma or RT of these viruses. Six major proteins, with sizes of approximately 10,000, 13,000, 19,000, 24,000, 42,000, and 52,000 daltons, were apparent when doubly banded, disrupted HTLV(CR) particles were chromatographed on a NaDodSO(4)/polyacrylamide gel. The number of these particle-associated proteins is consistent with the expected proteins of a retrovirus, but the sizes of some are distinct from those of most known retroviruses of the primate subgroups.