5'-Deoxy-5'-methylthioadenosine (methylthioadenosine) is cleaved to adenine and 5-methylthioribose-1-phosphate (methylthioribose-1-P). Methylthioribose-1-P is converted to 2-keto-4-methylthiobutyrate ( ketomethylthiobutyrate ) which is transaminated to methionine. We report that one subline of a heterogeneous human colon carcinoma, DLD-1 Clone D, only forms methylthioribose-1-P from methylthioadenosine or 5'-deoxy-5'-methylthioinosine (methylthioinosine), a deaminated derivative of methylthioadenosine, whereas Clone A converts methylthioadenosine and methylthioinosine to methionine, as shown by growth studies in culture of Clone A and Clone D cells and radioactive studies utilizing [methyl-14C]methylthioadenosine or [methyl-14C]methylthioinosine in the presence of extracts of these cells lines. To characterize this defect, we utilized three protein fractions isolated from rat liver which together convert methylthioribose-1-P to ketomethylthiobutyrate . Addition of only Fraction A to Clone D sonicates restores its ability to convert methylthioadenosine to methionine. This fraction is responsible for converting methylthioribose-1-P to 5- methylthioribulose -1-phosphate; radioactive studies confirm this observation. Thus, Clone D is deficient in an enzyme contained in Fraction A; this represents a qualitative biochemical difference between the two clones derived from a single human tumor.