The load sensitivity of the relaxation phase was studied in rat papillary muscle, with isotonic afterloaded contractions and stretches applied after the peak of isometric twitches. The tension decay occurred earlier in isotonic than in isometric contractions. When a central region of the preparation was marked with small stainless steel pins, a lengthening of this region could be shown during relaxation of isometric (fixed end) contractions. This lengthening was earlier and faster in isotonic afterloaded contractions. Therefore the sensitivity of relaxation to load or length changes could be described in the context of the general mechanism of relaxation which takes into account the non uniform behaviour of the muscle and the internal movement during contractions. Interventions which decelerate the activation decay rate had different effects on the load dependence of relaxation. Caffeine addition and substitution of strontium for calcium abolished the load sensitivity while a temperature reduction had no influence on it.