Dendritic cells, the most potent 'professional' antigen-presenting cells, hold promise for improving the immunotherapy of cancer. In three different well-characterized tumour models, naive mice injected with bone marrow-derived dendritic cells prepulsed with tumour-associated peptides previously characterized as being recognized by class I major histocompatibility complex-restricted cytotoxic T lymphocytes, developed a specific T-lymphocyte response and were protected against a subsequent lethal tumour challenge. Moreover, in the C3 sarcoma and the 3LL lung carcinoma murine models, treatment of animals bearing established macroscopic tumours (up to 1 cm2 in size) with tumour peptide-pulsed dendritic cells resulted in sustained tumour regression and tumour-free status in more than 80% of cases. These results support the clinical use of tumour peptide-pulsed dendritic cells as components in developing effective cancer vaccines and therapies.