Granuloma formation, the principal pathologic consequence of infection with Schistosoma mansoni, is a complex process involving intricate cell-cell interactions in which intercellular adhesion molecules are likely to participate. To examine this possibility, sera of schistosomiasis patients in various clinical groups were assayed for the presence of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble E-selectin (sE-selectin). Comparisons were made between groups with different infection intensities (as predicted by fecal egg count) as well as between groups with severe (hepatosplenic) or milder (intestinal) pathology. All groups had elevated levels of sICAM-1 compared with controls. Also, patients in the high egg-excreting and hepatosplenic groups had significantly higher levels of serum sICAM-1 than patients in the low-egg-excreting and intestinal groups, respectively. The levels of sE-selectin were significantly elevated in the sera of all patients except those in the hepatosplenic group compared with controls. Patients in the intestinal group had significantly higher levels of sE-selectin in their sera than did hepatosplenic group patients, but serum sE-selectin levels of high- and low-egg-excreting patients were comparable. A striking finding of this study was the inverse correlation observed between sICAM-1 levels and peripheral blood mononuclear cell responses to schistosome soluble egg antigens (SEA) but not with responses to other schistosome antigens, purified protein derivative, or mitogen. Because ICAM-1 can perform a costimulatory function in antigen-presenting cell-T cell interactions, it is possible that shedding of ICAM-1 in the granuloma microenvironment interrupts proper costimulation, leading to unresponsive SEA-specific T cells. In this way, sICAM-1 could be one factor contributing to the observed modulation of cellular responses to SEA in chronic human schistosomiasis.