Graft arteriopathy, a leading cause of cardiac allograft failure, is associated with increased intimal smooth muscle cells, inflammatory cells, and accumulation of extracellular matrix. We hypothesized that cellular fibronectin plays a pivotal role in the progression of the allograft arteriopathy by directing the transendothelial trafficking of inflammatory cells through interaction of the connecting segment-1 (CS1) motif with the very late antigen-4 (VLA-4) integrin, and tested this in vivo using a blocking peptide. Cholesterol-fed rabbits underwent heterotopic cardiac transplantation without immunosuppression. The treatment group (n = 7) received a synthetic CS1 peptide (1 mg/kg per d, subcutaneously), and the controls (n = 7) received an inactive peptide (1 mg/kg per d, subcutaneously). At 7-8 d after transplantation, hearts were harvested and sectioned for morphometric analysis and immunohistochemical studies. We observed a > 50% decrease in the incidence (P < 0.001) and severity (P < 0.001) of donor coronary artery intimal thickening in the CS1-treated compared with the control group. These findings correlated with reduced infiltration of T cells (P < 0.05), a trend toward decreased expression of adhesion molecules (P < 0.06), and less accumulation of fibronectin (P < 0.03). Our data suggest that the VLA-4-fibronectin interaction is critical to the progression of the allograft arteriopathy by perpetuating the immune-inflammatory response in the vessel wall.