A 2,385-bp sequence that contains the information for the autonomous replication of the IncL/M plasmid pMU604 was characterized. Genetic analyses revealed that the replicon specifies at least four structural genes, designated repA, repB, repC, and rnaI. The repA gene encodes a protein with a molecular weight of 40,861 which probably functions as an initiator for replication. The functions of the proteins of the repB and repC genes are unclear; however, mutations in the start codon of repB reduced the expression of both repB and repA, indicating that these two genes are translationally coupled. The rnal gene encodes a small antisense RNA of about 75 to 77 bases and is responsible for the incompatibility phenotype, thus implicating its role as the main copy number determinant. RNAI exerts its effect in trans to repress the expression of repA at the posttranscriptional level. Furthermore, two complementary sequences of 8 bases, with the potential to interact and form a putative pseudoknot structure, were identified in the leader region of the repA mRNA. Base-pairing between the two complementary sequences was shown to be critical for efficient repA expression. A model for the regulation of pMU604 replication involving both translational coupling and pseudoknot formation is proposed.