Singles transmission in volume-imaging PET with a 137Cs source

Phys Med Biol. 1995 May;40(5):929-44. doi: 10.1088/0031-9155/40/5/014.

Abstract

The feasibility of a new method of attenuation correction in PET has been investigated, using a single-photon emitter for the transmission scan. The transmission scan is predicted to be more than a factor of ten faster with the singles method than the standard coincidence method, for comparable statistics. Thus, a transmission scan be completed in 1-2 min, rather than 10-20 min, as is common practice with the coincidence method. In addition, a potential advantage of using the single-photon source 137Cs, which has an energy of 662 keV, is that postinjection transmission studies can be performed using energy discrimination to separate the transmission from the emission data at 511 keV. In order to compensate for the energy difference of the attenuation coefficients at 662 keV compared to 511 keV, the transmission images are segmented into two compartments, tissue and lung, and known values (for 511 keV) of attenuation are inserted into these compartments. This technique also compensates for the higher amount of scatter present with the singles method, since it is not possible to use a position gate (based on collinearity of the source and two detector positions) as is commonly done with a positron-emitting source. We have demonstrated, with experimental phantom studies, that the singles transmission method combined with segmentation gives results equivalent both qualitatively and quantitatively to the coincidence method, but requires significantly less time.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biophysical Phenomena
  • Biophysics
  • Cesium Radioisotopes
  • Evaluation Studies as Topic
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Models, Structural
  • Tomography, Emission-Computed / methods*
  • Tomography, Emission-Computed / statistics & numerical data

Substances

  • Cesium Radioisotopes