Topoisomerase II inhibitors such as etoposide (VP16) are able to stabilize the enzyme-DNA complex by trapping the topoisomerase on DNA without affecting its strand-break activity. To test if this inhibition resulting in chromosomal breakage via double-strand breaks could underlie gene amplification, we performed VP16 treatments followed by selection for PALA resistance in V79/B7 Chinese hamster cells. We found that VP16 induced PALA-resistant cells very efficiently, and in a dose-dependent manner. On the other hand VP16 in combination with 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase involved in DNA repair, reduced the frequency of PALA-resistant cells. Cytogenetic analysis revealed a higher number of chromosomal aberrations in VP16-treated cells than in cells treated with VP16 plus 3AB. These results suggest a correlation between frequency of chromosomal aberrations and frequency of PALA-resistant cells, and are consistent with models which consider chromosomal breakage as an important step in initiating gene amplification.