We studied the direct effects of interferon-gamma (IFN-gamma) in single cell colony assays of CD34+HLA-DR++ bone marrow progenitor cells stimulated by either granulocyte-colony-stimulating factor (G-CSF), interleukin(IL)-3, granulocyte/macrophage-colony-stimulating factor (GM-CSF), combinations of these CSF or medium conditioned by the 5637 human bladder carcinoma cell line. In this culture system IFN-gamma stimulated monocytic colonies (CFU-M) no matter which CSF or CSF combination was used to support them and inhibited granulocytic colonies (CFU-G) if they were generated in the presence of G-CSF. IL-4 antagonized the myelopoietic effects of IFN-gamma: the IFN-gamma-induced suppression of G-CSF-supported CFU-G, as well as the stimulation of CFU-M, were reversed by IL-4. In all cultures, IFN-gamma had a limited, but statistically non-significant, inhibitory effect on CFU-GM, which was not affected by the presence of IL-4. These data show that IFN-gamma and IL-4 reciprocally regulate the generation of myeloid cells involved in humoral (neutrophils) and cellular (macrophages) immune responses through a direct effect on monopotential myeloid progenitor cells.