SM22 alpha is expressed exclusively in smooth muscle-containing tissues of adult animals and is one of the earliest markers of differentiated smooth muscle cells (SMCs). To examine the molecular mechanisms that regulate SMC-specific gene expression, we have isolated and structurally characterized the murine SM22 alpha gene. SM22 alpha is a 6.2-kilobase single copy gene composed of five exons. SM22 alpha mRNA is expressed at high levels in the aorta, uterus, lung, and intestine, and in primary cultures of rat aortic SMCs, and the SMC line, A7r5. In contrast to genes encoding SMC contractile proteins, SM22 alpha gene expression is not decreased in proliferating SMCs. Transient transfection experiments demonstrated that 441 base pairs of SM22 alpha 5'-flanking sequence was necessary and sufficient to program high level transcription of a luciferase reporter gene in both primary rat aortic SMCs and A7r5 cells. DNA sequence analyses revealed that the 441-base pair promoter contains two CArG/SRF boxes, a CACC box, and one potential MEF-2 binding site, cis-acting elements which are each important regulators of striated muscle transcription. Taken together, these studies have identified the murine SM22 alpha promoter as an excellent model system for studies of developmentally regulated, lineage-specific gene expression in SMCs.