We have observed a high correlation between the intermolecular interaction energy (Einter) calculated for HIV-1 protease inhibitor complexes and the observed in vitro enzyme inhibition. A training set of 33 inhibitors containing modifications in the P1' and P2' positions was used to develop a regression equation which relates Einter and pIC50. This correlation was subsequently employed to successfully predict the activity of proposed HIV-1 protease inhibitors in advance of synthesis in a structure-based design program. This included a precursor, 47, to the current phase II clinical candidate, L-735,524 (51). The development of the correlation, its applications, and its limitations are discussed, and the force field (MM2X) and host molecular mechanics program (OPTIMOL) used in this work are described.