Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis

J Immunol. 1994 Apr 1;152(7):3606-14.

Abstract

The purpose of this study was to determine whether or not membrane-bound and soluble forms of IL-4 receptors are expressed by isolated subsets of murine lung fibroblasts and to evaluate the potential functional consequences of IL-4 receptor triggering. Recent studies demonstrate that IL-4-synthesizing Th2 cells and mast cells are present in increased numbers in the lung during inflammation and fibrosis, suggesting that IL-4 may play a regulatory role in these events. We hypothesize that pulmonary fibroblasts and subsets thereof are intimately involved in this inflammatory response and that IL-4 is an active player in stimulating fibroblast collagen synthesis and hyperproliferation, creating a fibrotic environment in the lung. The fibroblast subsets used in these experiments differ not only in surface expression of the thymocyte-1 (Thy-1) Ag, but also in function and morphology. We now report the novel finding that IL-4 receptors are present at discordant levels on Thy-1+ and Thy-1- lung fibroblasts. IL-4R level and affinity were analyzed using a monoclonal anti-IL-4R Ab and equilibrium binding analysis with 125I-labeled IL-4. Reverse transcriptase PCR demonstrated the presence of mRNA for membrane-bound and soluble IL-4R. Lung fibroblast subsets secrete soluble IL-4R protein at dramatically different levels, as detected by an ELISA. Thy-1+ and Thy-1- lung fibroblasts were treated with IL-4 to determine whether this cytokine was profibrotic. Thy-1+ fibroblasts responded to IL-4 by proliferating and up-regulating collagen production. In contrast, Thy-1- fibroblasts proliferate to a lesser degree than Thy-1+ fibroblasts and were not stimulated to secrete increased levels of collagen. Overall, these results suggest that elevated levels of IL-4 at a site of injury could result in the development of fibrosis by enhancing fibroblast subset proliferation and collagen synthesis.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, Surface / analysis
  • Base Sequence
  • Cell Division / drug effects
  • Collagen / biosynthesis*
  • DNA Primers / chemistry
  • Fibroblasts / cytology
  • Fibroblasts / metabolism*
  • Gene Expression
  • In Vitro Techniques
  • Interleukin-4 / pharmacology
  • Membrane Glycoproteins / analysis
  • Membrane Glycoproteins / metabolism
  • Mice
  • Molecular Sequence Data
  • RNA, Messenger / metabolism
  • Receptors, Interleukin-4
  • Receptors, Mitogen / chemistry
  • Receptors, Mitogen / metabolism*
  • Solubility
  • Thy-1 Antigens

Substances

  • Antigens, Surface
  • DNA Primers
  • Membrane Glycoproteins
  • RNA, Messenger
  • Receptors, Interleukin-4
  • Receptors, Mitogen
  • Thy-1 Antigens
  • Interleukin-4
  • Collagen