The generation of infectious rabies virus (RV), a non-segmented negative-stranded RNA virus of the Rhabdoviridae family, entirely from cloned cDNA is described. Simultaneous intracellular expression of genetically marked full-length RV antigenome-like T7 RNA polymerase transcripts and RV N, P and L proteins from transfected plasmids resulted in formation of transcriptionally active nucleocapsids and subsequent assembly and budding of infectious rabies virions. In addition to authentic RV, two novel infectious RVs characterized by predicted transcription patterns were recovered from modified cDNA. Deletion of the entire non-translated pseudogene region, which is conserved in all naturally occurring RVs, did not impair propagation of the resulting virus in cell culture. This indicates that non-essential genetic material might be present in the genomes of non-segmented RNA viruses. The introduction of a functional extra cistron border into the genome of another virus resulted in the transcription of an additional polyadenylated mRNA containing pseudogene sequences. The possibility of manipulating the RV genome by recombinant DNA techniques using the described procedure--potentially applicable also for other negative-stranded viruses--greatly facilitates the investigation of RV genetics, virus-host interactions and rabies pathogenesis and provides a tool for the design of new generations of live vaccines.