Low-dose chemotherapy delays relapse of a dominated and resistant sub-population in a heterogeneous human SCLC xenograft in nude mice

Int J Cancer. 1994 Nov 1;59(3):394-9. doi: 10.1002/ijc.2910590318.

Abstract

We investigated the influence of cellular heterogeneity on the response to low-dose BCNU chemotherapy of an artificially mixed human small-cell lung cancer (SCLC) xenograft in nude mice containing a BCNU-sensitive and dominating sub-population and a BCNU-resistant and undetectable (dominated) sub-population. The cell lines differed in DNA content, making them distinguishable by DNA flow cytometry (FCM). After 3 weeks of tumor growth, the mice were stratified according to tumor size and randomized to 2 different low-dose treatments with BCNU or no treatment. After a further 3 to 4 weeks, a high-dose treatment (LD10) was given to both groups of treated tumors. Changes in the relative proportions of and cell lines in the tumors were measured by FCM on fine-needle tumor aspirates. At the time of low-dose treatment, all the tumors were totally dominated by the sensitive cells. A temporary response was seen after low-dose treatment. After the high-dose treatment, a similar short response was seen. In the non-treated group, the sensitive cells continued to dominate. At the time of tumor regrowth after the low-dose treatment, most of the tumors continued to be dominated by the sensitive population. At the time of progression after the response to the high-dose treatment, the resistant cell line was the predominant population. If compared with a single high-dose BCNU treatment, the response of tumors treated with a low dose was superior, indicating that the presence of a dominating and slower growing sub-population influenced the outcome of the treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinoma, Small Cell / drug therapy*
  • Carcinoma, Small Cell / pathology
  • Carmustine / administration & dosage
  • Carmustine / therapeutic use*
  • DNA, Neoplasm / analysis
  • Drug Resistance
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / pathology
  • Male
  • Mice
  • Mice, Nude
  • Mitosis
  • Neoplasm Recurrence, Local / drug therapy*
  • Neoplasm Recurrence, Local / pathology
  • Neoplasm Transplantation
  • Transplantation, Heterologous
  • Tumor Cells, Cultured

Substances

  • DNA, Neoplasm
  • Carmustine