Agents combining thromboxane receptor antagonism with thromboxane synthase inhibition: [[[2-(1H-imidazol-1-yl)ethylidene]amino]oxy]alkanoic acids

J Med Chem. 1994 Oct 14;37(21):3588-604. doi: 10.1021/jm00047a016.

Abstract

A new class of compounds combining thromboxane-A2 (TxA2) receptor antagonism and thromboxane synthase inhibition is described. A first series of (E)- and (Z)-[[[2-(1H-imidazol-1-yl)ethylidene]amino]oxy]pentanoic acids showed relevant thromboxane synthase inhibition associated with weak TxA2 receptor antagonism, while a series of (+/-)-(E)-[[[2-(1H-imidazol-1-yl)-3-phenylpropylidene]amino]oxy] pentanoic acids, structurally derived from the former, showed potent and well-balanced dual activity. Structural requirements for significant single and dual activity are discussed. Two close congeners of the latter series, (+/-)-(E)-5-[[[1-cyclohexyl-2-(1H-imidazol-1-yl)-3- phenylpropylidene]amino]oxy]pentanoic acid 23c and its p-fluorophenyl analog 23m, inhibited TxB2 production in vitro, in rat whole blood during clotting, with IC50 of 0.06 and 0.37 microM and antagonized the binding of [3H]SQ 29548 to washed human platelets, with IC50 of 0.08 and 0.02 microM, respectively. These two compounds were selected for further pharmacological evaluation and were shown to antagonize U46619-induced platelet aggregation in human platelet rich plasma with IC50 of 0.30 and 0.44 microM, respectively. They were both orally available, and in particular 23m caused a long lasting ex vivo TxA2 synthase inhibition in the fed rat. The levorotatory enantiomer of 23c, stereospecifically synthesized as a model compound, was found to be more potent than racemic 23c with regard to TxA2 receptor antagonism (IC50 = 0.04 microM) and equivalent to the latter with regard to TxA2 synthase inhibition. A molecular modeling study concerning the levorotatory enantiomer of 23c (S), TxA2, and representative TxA2 antagonists of different classes led to the definition of a putative pharmacophoric model for the TxA2 receptor ligands.

MeSH terms

  • 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
  • Animals
  • Binding, Competitive
  • Blood Platelets / drug effects
  • Blood Platelets / metabolism
  • Bridged Bicyclo Compounds, Heterocyclic
  • Computer Simulation
  • Dogs
  • Fatty Acids, Unsaturated
  • Fibrinolytic Agents
  • Humans
  • Hydrazines / blood
  • Imidazoles / chemical synthesis*
  • Imidazoles / chemistry
  • Imidazoles / pharmacology
  • Male
  • Models, Molecular
  • Molecular Structure
  • Pentanoic Acids / chemical synthesis*
  • Pentanoic Acids / chemistry
  • Pentanoic Acids / pharmacology
  • Platelet Aggregation / drug effects
  • Prostaglandin Endoperoxides, Synthetic / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Thromboxane / antagonists & inhibitors*
  • Stereoisomerism
  • Thromboxane A2 / analogs & derivatives
  • Thromboxane A2 / pharmacology
  • Thromboxane B2 / antagonists & inhibitors
  • Thromboxane-A Synthase / antagonists & inhibitors*

Substances

  • Bridged Bicyclo Compounds, Heterocyclic
  • Fatty Acids, Unsaturated
  • Fibrinolytic Agents
  • Hydrazines
  • Imidazoles
  • Pentanoic Acids
  • Prostaglandin Endoperoxides, Synthetic
  • Receptors, Thromboxane
  • FCE 27262
  • 5-(((1-cyclohexyl-2-(1H-imidazol-1-yl)-3-(4-fluorophenyl)propylidene)amino)oxy)pentanoic acid
  • Thromboxane B2
  • Thromboxane A2
  • 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
  • SQ 29548
  • Thromboxane-A Synthase