Na-independent Cl(-)-HCO3- exchange mediates recovery of pHi from alkalosis in guinea pig ventricular myocytes

Am J Physiol. 1994 Jul;267(1 Pt 2):H85-91. doi: 10.1152/ajpheart.1994.267.1.H85.

Abstract

The pH-sensitive fluorescent indicator, carboxy-seminaphthorhodafluor 1 (SNARF 1) was used to assess the contribution of forward Na-independent Cl(-)-HCO3- exchange (1 external Cl- exchanged for 1 internal HCO3-) to intracellular pH (pHi) recovery from alkalosis in adult ventricular myocytes (guinea pig). Intracellular alkalosis was elicited by external application of the weak base, trimethylamine. In the absence of CO2-HCO3- (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-buffered solution) the initial rate of pHi recovery from alkalosis (pHi = 7.25-7.75) was slow and independent of pHi, yielding an apparent net HCO3- efflux of 0.36 +/- 0.11 mM/min. In CO2-HCO3(-)-buffered solution, the initial rate of pHi recovery and net HCO3- efflux were much faster and markedly increased by raising pHi. At pHi approximately 7.25, net HCO3- efflux was approximately 2 mM/min and rose to 9 mM/min at pHi approximately 7.6. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (0.4 mM) decreased net HCO3- efflux by 78.1 +/- 8.9% in CO2-HCO3(-)-buffered solution. Reduction in extracellular Cl- concentration from 135 to 20 mM markedly slowed the rate of pHi recovery from alkalosis and reduced net HCO3- efflux. pHi recovery from alkalosis was unaffected by removal of external sodium or exposure to 1 mM amiloride. These results indicate that forward Na-independent Cl(-)-HCO3- exchange mediates pHi recovery from alkalosis in guinea pig ventricular myocytes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid / pharmacology
  • Alkalosis / metabolism*
  • Amiloride / pharmacology
  • Ammonium Chloride / pharmacology
  • Animals
  • Antiporters / physiology*
  • Benzopyrans
  • Buffers
  • Chloride-Bicarbonate Antiporters
  • Extracellular Space / metabolism
  • Fluorescent Dyes
  • Guinea Pigs
  • Heart Ventricles
  • Hydrogen-Ion Concentration
  • Methylamines / pharmacology
  • Myocardium / cytology
  • Myocardium / metabolism*
  • Naphthols
  • Osmolar Concentration
  • Rhodamines
  • Sodium / metabolism*

Substances

  • Antiporters
  • Benzopyrans
  • Buffers
  • Chloride-Bicarbonate Antiporters
  • Fluorescent Dyes
  • Methylamines
  • Naphthols
  • Rhodamines
  • carboxy-seminaphthorhodaminefluoride
  • Ammonium Chloride
  • Amiloride
  • Sodium
  • trimethylamine
  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid