Identification and characterization of aspartate residues that play key roles in the allosteric regulation of a transcription factor: aspartate 274 is essential for inducer binding in lac repressor

Biochemistry. 1994 Mar 29;33(12):3607-16. doi: 10.1021/bi00178a018.

Abstract

To explore the roles of three aspartate residues, Asp88, Asp130, and Asp274, found in the proposed inducer binding site of lac repressor [Sams, C. F., Vyas, N. K., Quiocho, F. A., & Matthews, K. S. (1984) Nature 310, 429-430], each site was substituted with alanine, glutamate, lysine, or asparagine by site-specific mutagenesis. The mutations at the Asp88 site resulted in a 5-13-fold decrease in inducer binding affinity, largely due to an increase in the inducer dissociation rate constants for these mutants. In addition, the mutant proteins Asp88-->Ala and Asp88-->Lys exhibited altered allosteric behavior for inducer binding. These data conflict with the original hypothesis placing Asp88 in the inducer binding site, but are in agreement with a recent model that places this amino acid close to the subunit interface involved in cooperativity associated with inducer binding [Nichols, J. C., Vyas, N. K., Quiocho, F. A., & Matthews, K. S. (1993) J. Biol. Chem. 268, 17602-17612; Chen, J., & Matthews, K. S. (1992) J. Biol. Chem. 267, 13843-13850]. Substitution at Asp130 did not alter the inducer binding affinity nor other binding activities. Thus, this amino acid is not crucial in the binding to beta-substituted monosaccharides or in protein function. In stark contrast, all mutant proteins with substitutions at the Asp274 site exhibited no detectable inducer binding. With the exception of Asp274-->Lys, the structures of these mutant proteins appear to be similar to wild-type. The data demonstrate that Asp274 plays a crucial role in inducer binding of this transcriptional regulator.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Allosteric Regulation
  • Antibodies, Monoclonal
  • Aspartic Acid / genetics
  • Aspartic Acid / metabolism*
  • Binding Sites
  • Chromatography, Gel
  • Circular Dichroism
  • Galactosides / metabolism*
  • Isopropyl Thiogalactoside / metabolism
  • Macromolecular Substances
  • Models, Molecular
  • Molecular Structure
  • Mutagenesis, Site-Directed
  • Protein Structure, Secondary
  • Repressor Proteins / chemistry*
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Spectrometry, Fluorescence
  • Structure-Activity Relationship
  • Trypsin / metabolism

Substances

  • Antibodies, Monoclonal
  • Galactosides
  • Macromolecular Substances
  • Repressor Proteins
  • Aspartic Acid
  • Isopropyl Thiogalactoside
  • Trypsin