Two human melanoma cell lines were transduced with the human interleukin (IL)-7 and IL-2 genes using retroviral-mediated gene transfer. Stable, high-level cytokine expression was achieved. The in vitro growth of transduced tumors was unaltered. Neither of the IL-2-transduced melanoma cell lines grew in athymic mice, whereas one IL-7-transduced melanoma line showed retarded in vivo growth. This is consistent with animal studies suggesting a predominantly T-cell response to IL-7-transduced tumors and a more nonspecific response to IL-2-transduced tumors. Both IL-7- and IL-2-transduced melanoma cell lines could induce cytotoxic lymphocytes in mixed lymphocyte-tumor cultures. The expression of putative melanoma antigens (MAGE)-1 and MAGE-3 was unaltered by cytokine transduction. In one cell line, IL-7 transduction resulted in a marked inhibition of the immunosuppressive peptide transforming growth factor (TGF)beta 1. The results allow a comparison of immunobiologic properties of IL-7- and IL-2-transduced human melanoma cell lines in consideration of their use in genetically engineered tumor vaccines. IL-7 transduction results in stable cytokine expression and phenotypic alterations that appear to be favorable for enhanced immunogenicity and it deserves clinical testing.