Purpose: The excellent treatment results obtained with traditional radiosurgery have stimulated attempts to broaden the range of intracranial disorders treated with radiosurgical techniques. For major users of radiosurgery this resulted in a gradual shift from treating vascular diseases in a single session to treating small, well delineated primary tumors on a fractionated basis. In this paper we present the technique currently used in Montreal for the fractionated stereotactic radiotherapy of selected intracranial lesions.
Methods and materials: The regimen of six fractions given every other day has been in use for "fractionated stereotactic radiotherapy" in our center for the past 5 years. Our current irradiation technique, however, evolved from our initial method of using the stereotactic frame for target localization and first treatment, and a "halo-ring" with tattoo skin marks for the subsequent treatments. Recently, we developed a more precise irradiation technique, based on an in-house-built stereotactic frame which is left attached to the patient's skull for the duration of the fractionated regimen. Patients are treated with the stereotactic dynamic rotation technique on a 10 MV linear accelerator (linac).
Results: In preparation for the first treatment, the stereotactic frame is attached to the patient's skull and the coordinates of the target center are determined. The dose distribution is then calculated, the target coordinates are marked onto a Lucite target localization box, and the patient is placed into the treatment position on the linac with the help of laser positioning devices. The Lucite target localization box is then removed, the target information is tattooed on the patient's skin, and the patient is given the first treatment. The tattoo marks in conjunction with the target information on the Lucite target localization box are used for patient set-up on the linac for the subsequent 5 treatments. The location of the target center is marked with radio-opaque markers on the target localization box and verified with a computerized tomography scanner prior to the second treatment. The same verification is done prior to other treatments when the target center indicated by the target localization box disagrees with that indicated by the tattoo marks. The new position of the target center is then determined and used for treatment positioning.
Conclusion: The in-house-built frame is inexpensive and easily left attached to the patient's skull for the 12 day duration of the fractionated regimen. Positioning with the Lucite target localization box verified with tattoo marks ensures a high level of precision for individual fractionated treatments.