Activation of the NADPH oxidase of phagocytic cells requires the action of Rac2 or Rac1, members of the Ras superfamily of GTP-binding proteins. Rac proteins are active when in the GTP-bound form and can be regulated by a variety of proteins that modulate the exchange of GDP for GTP and/or GTP hydrolysis. The p190 Rac GTPase Activating Protein (GAP) inhibits human neutrophil NADPH oxidase activity in a cell-free assay system with a K1 of approximately 100 nM. Inhibition by p190 was prevented by GTP gamma S, a nonhydrolyzable analogue of GTP. Similar inhibition was seen with a second protein exhibiting Rac GAP activity, CDC42Hs GAP. The effect of p190 on superoxide (O2-) formation was reversed by the addition of a constitutively GTP-bound Rac2 mutant or Rac1-GTP gamma S but not by RhoA-GTP gamma S. Addition of p190 to an activated oxidase produced no inhibitory effect, suggesting either that p190 no longer has access to Rac in the assembled oxidase or that Rac-GTP is not required for activity once O2- generation has been initiated. These data confirm the role of Rac in NADPH oxidase regulation and support the view that it is the GTP form of Rac that is necessary for oxidase activation. Finally, they raise the possibility that NADPH oxidase may be regulated by the action of GAPs for Rac proteins.